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Abstract

This paper explores low observability flight path planning of unmanned air vehicles in the
presence of radar detection systems. The probability of detection model of an aircraft near
an enemy radar depends on aircraft attitude, range, and configuration. A detection model
is coupled with a simplified aircraft dynamics model. The Nonlinear Trajectory Generation
(NTG) software package developed at Caltech is used. NTG algorithm is a gradient descent
optimization method that combines three technologies: B-splines, output space collocation and
nonlinear optimization tools. Implementations are formulated with temporal constraints that
allow periods of high observability interspersed with periods of low observability. Illustrative
examples of optimized routes for low observability are presented.

Keywords: Trajectory Generation, Path Planning, Low-Observable, UAV, RADAR, Probability of Detection

1 Introduction

As the development of new unmanned vehicles progresses, research focus on coordinating large
teams of these vehicles has highlighted many new challenges for control. Due to complexity, the
approach taken in the DARPA MICA program is to decompose the control design in a hierarchical
manner. The cooperative path planning layer routes the vehicles. At this level of the controller, the
design goals are to command the vehicles to pursue dynamically feasible routes, such as speed and
turning rate limits, while avoiding threats and collisions with other vehicles. Driven by battlespace
management needs, real-world threats can be much more complex than those modeled in prior
trajectory generation work. The detectability of an aircraft traveling near an enemy radar depends
on more than just the distance to the radar; it depends on the aircraft attitude and configuration
as well. This feature in the threat model introduces path dependencies as well as sharp gradients
into the underlying optimization problems, and it presents new challenges for trajectory generation
techniques. In this paper, we investigate the use of the nonlinear trajectory generation (NTG)
method as a solution to the low-observability path planning challenge.

For the low-observability problem, the use of NTG is motivated by recent extensions in its
ability to deal with temporal constraints. In [5], NTG is used for a missile intercept problem. In
[4], NTG is extended to a multi-vehicle problem with precedence constraints such as look after strike
and simultaneous strike. The low-observability routing problem could be considered to be temporal
in nature, by allowing periods of high observability interspersed with periods of low observability.
This is desirable because of the way the enemy fire-control systems work. Although it might not
be possible to get close to the enemy targets while maintaining low-observability at all times; by
strategically flying low-observable paths for part of the time, it may be possible to drive the enemy
systems into a condition called lock-loss. This condition aborts the enemy fire control plans after a
specified time of no detection.

Computational efficiency as well as the capability to enforce more realistic constraints, are two
additional motivations that have prompted the choice for NTG in past problems. The method
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combines three technologies- differential flatness, splines and nonlinear optimization and has been
extensively investigated [6, 7, 3] . Differentially flat systems have the property that the input
variables and states can be written in terms of the output variables and their derivatives. This
can aid in computationally efficiency by eliminating the need to integrate as in shooting methods
[1]. The use of splines also addresses computational issues by allowing complicated functions to be
written with low order polynomials that are active over distinctive intervals.The NPSOL [8] package,
which uses sequential quadratic programming, is used in this work as a nonlinear optimization tool.

In this paper, we investigate the use of NTG for low-observability trajectory generation for
unmanned air vehicles. The aircraft model and detection models are described in the second
section. The third section presents an NTG approach formulated for low observability. The fourth
section contains examples. The examples demonstrate the ability of NTG to converge to solutions
which constrain observability to acceptable levels; however, they also highlight some difficulties
with the approach.

2 Model

This section presents the model. These models are based on those developed as part of the DARPA
MICA program by [2]. In this program, as the problems become progressively more challenging,
the models become more refined to capture more realistic features. For the purposes of this report,
the models used here are simplified. :

The two main components are the aircraft and the detection models, as shown in figure 2. The
aircraft model shown is a simple point mass model. Throughout this paper, we assume that the
aircraft maintains a fixed altitude and the radar is on the ground. The inputs to the model are a
series of waypoints as well as the average speeds required to travel between waypoints. Changes
in speed and heading occur instantaneously at the waypoints. The output of the aircraft model is
the aircraft position and attitude in inertial coordinates (East, North, Up). Figure 1 illustrates an
aircraft traveling between waypoints. The equations below represent the state equations for the
vehicle traveling from waypoint 7 to waypoint j.

Tge = ,-J-sin(wij) (1)
Yac = Usjeos(ij) (2)
3)

where Uj; is the speed and 9 is the heading, the angle between the nose and north. Equivalently,
assuming that the velocity vector is aligned with the nose, '

¥ = tan122 @)

Yac

The aircraft position (Z4c, Yge) 2ac) is combined with the radar position (zg,yr, zgr) to form a
vector from the aircraft to the radar.

R= (ZR - zac)zcaat + (yR - yac)ynorth + (zR - zac)zup (5)

This vector is then transformed to body axes. Assuming zero bank and pitch angle, for this
model, the transformation is

ZRac cos(y) sin(y) O (TR — Zac)
Roody = | YRac | = | —sin(¢¥) cos(y) 0 (YR — Yac) - (6)
ZRac 0 0 1 (2R ~ zac)

The inputs to the detection model are the azimuth, elevation and slant range (az,el, R,;). To
obtain these values the vector Rp.q, is transformed to spherical coordinates as follows

2
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Figure 1: The aircraft model is a point mass model.

= tan~1 ( YRac
az =tan™! (Iaac) (D
el = tan™! (%‘:’) (8)
Ra = \/Thae + Vs + Zac (9)

where Ry = \/a:%ac + y%,. is the ground range. Note that since heading is a function of velocities’
as in equation 4, then these equations can be rewritten as functions of the position and velocity
z,%,9,9 ) . _ .
For the detection model, two tables-s» used. these tables are based on the small uav and
e first tablé computes the radar signature given the
azimuth and elevation in degrees. The Bigmature is a unitless, intermediary variable that is related
to radar cross section. Note for azimuths within +/- 30 degrees (“nose-in” flight), the signature
values are lower than for azimuths outside this range (“nose-out” flight). The second table relates
the probability of detection with the signature and the slant range. '

Table 1. Signature Values Respect to Azimuth and Elevation

el /az | 0.0 | +/-30 | +/-31 | +/-180
0.0 15(15 5.5 55
+/-20]25125 5.5 5.5
+/-45]135]35 6.0 6.0
+/-90] 6.5 | 6.5 6.5 6.5

g Table 2. Probability of Detection (Pd) Values Respect to Range and Signature




Figure 2: The aircraft dynamics and the detection model comprise two main components of the
model.

Signature | Pd=.99 | Pd=.5 | Pd=.1 | Pd=.01
380.1 4812 | 555.6 | 656.6
213.7 270.6 | 312.5 | 369.2
120.2 152.2 ] 175.7 | 207.6
67.6 85.6 98.8 116.8
38.0 48.1 55.6 65.7
21.4 27.1 31.2 36.9 .
12.0 15.2 17.6 20.8

=N WOy~

At fixed altitude, it is interesting to consider $}¢ how the probability of detection varies with
ground range as in figure £3_] The figure shows that “nose in” flight is signficantly less detectable
than “nose out flight”. Near 50 km, the approximate range of a homing missile, the detection
probabilities vary approximatlely from 0.4 to 0.65. Outside the 80 km radar range, the detection
probabilities are zero.

To aid in understanding how the probability of detection varies along various trajectories, we
focus on an example where the radar is located at the origin of an inertial coordinate frame with
coordinates (x (east),y (north),z (up)). An aircraft starts at position (-100 km, -100 km, 12 km)
and may travel along different flight paths. Two flight paths are shown in figure 4. Positions
are shown in the (x (east),y (north)) plane. Times are not indicated on the plot. The trajectory
marked with circles is a straight line approach to the origin. The heading is initially 45 degrees,
and the azimuth is always near zero. As an airplane following the “circle” trajectory flies closer to
the origin, the elevation angle has a larger magnitude and the probability of detection rises. The
'plus’ trajectory consists of several segments with portions in easterly, northerly and straight line
approaches towards the radar. Note that the occasional sharp changes in the “plus” trajectory occur
because the azimuth changes in and out of the +/- 30 degree bound. In the first table, azimuths
outside this range yielded higher signatures and consequently higher probability of detections.

From the two tables, an analytical observability model, generically shown in equation (10) can
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Figure 3: At fixed altitude the probability of detection is smaller for “nose in” flight with azimuths
within 30 deg and decreases with increasing ground range

be developed any number of function approximation techniques.

sig = sig(az,el)
pa = pa(R, sig)

We have used the B—spline curve fits because of their flexibility and ease of computing their deriva-
tives to find analytical models for the signature and probability of detection data given in tables (1)
and (2), respectively. Figure (5) illustrates the signature values given in table (1) in 3-d. Figure
(6) and (7) show the result of the fit function model of the signature values by B-spline tensor
product functions and the error between the fit function and actual data values, respectively.

Similarly, Figure (8) illustrates the probability of detection values respect to range and signature

values given in table (1) in 3—d. Figure (2?) and (??) show the result of the fit function model of
the probability of detection values by B—spline tensor product functions and the error between the
fit function and actual data values, respectively.

Then the problem is to find trajectories for the dynamic system in equation 3 such that the
trajectories are optimized with respect to the probability of detection models described in this sec-
tion. This section illustrates that even for highly simplified models, the optimization of trajectories
for low observability flight can be quite challenging.

3 Approach

In this section, we first briefly outline the NTG algorithm with temporal constraints and then
describe our approach to the low observability trajectory optimization problem formulation. Illus-
trative examples will be given in the next section.

3.1 Brief Summary of NTG Algorithm

The baseline NTG algorithm has been described extensively in the literature [5, 7, 6, 3}, therefore
in this section we outline it briefly.

The NTG software package is based on a combination of nonlinear control theory, spline theory
and sequential quadratic programming. There are three steps inVNTG algorithm. The first step
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Figure 4: Probability of Detection exhibits sharp gradients and path dependencies.

is to use the differential flatness property [?] to find a new set of outputs of a system so that the
system dynamics can be mapped down to a lower dimensional space. All the states and controls of
the system must be recovered from the new lower dimensional representation of the system. Let’s
consider a nonlinear system given by:

= f(z,u) (10)

where z € R" and u € R™ represents the states and the inputs, respectively. It is assumed that
all vector fields and functions are real-analytic. The goal is to find a minimizing trajectory of the
system given in Equation (10) for the following cost function (J)which consists of initial (¢p), final
(¢5) and trajectory (L) cost functions;

¢ .
3(z) = du(a(to), ulto) + by (a(tr), u(ts)) + [ * Liate), u(t)at (1)
The system given in Equation (10) is subject to the following constraints;
by < vo(z(to), u(te)) < ubp Ny initial constraints
by < Yp(x(ts),u(ty)) < ubg Ny final constraints (12)
by < Y (z(2), u(t)) < ubs N, trajectory constraints

The system in Equation (10) can be mapped to a lower dimensional space, in which it will be
easier and computationally more efficient to solve the optimization problem, by finding an output
2 =2, ,2q of the form

z2=A (a:, u,ulV), ... ,u(')) (13)
where u() denotes ith derivative of u respect to time.

If Equation (10) is differentially flat then the states and inputs of the system, (z,u), can be
completely established from Equation (14). If thgre i no flat output exists or one cannot find a flat
output, then (z,u) can still be completely determined from the lowest dimensional space possible
given in Equation (15). A necessary condition for the existance of such outputs is given in [?].




(z,u) =B (z,z(l), .- ,z(’)) _ (14)

. (a:’ u) — Bl (Z, z(l), ceey z(’l)) (15)

(z,u) = B2 (z, z(l), “ie, 2(82))

where z(¥) denotes ith derivative of z respect to time.

The second step in NTG is to further represent these outputs in terms of the B-spline functions as
P4 ;
2i(t) = ZB,-,kj(t)Cf for the knot sequence t;, j=1,---,¢
i=1

where B ;. (t) represents the B-spline basis function for the output z; with the degree of spline
polynomial k;. C! represents the coefficients of the B-splines, [; is the number of knot intervals,
and m; is the number of smoothness conditions at the knot points. p; is the number of coefficients
of the each output given by

p; = lj(k; — mj) + m;

Finally to solve the coefficients of the B-spline functions by sequential quadratic programming
package NPSOL, the cost function and constraints given in equations (11) and (12), respectively,
are re-formulated in terms of the B—spline coefficients. Therefore, the problem now can be stated
as the following nonlinear programming form:

mingepm F(y) subject to b<e(y)<ub

where J(z,u) — F(y) and {do(z(to), u(to)), és(z(ts) ults)), ée(z(t),u(t))} — c(y)

y=(Ch-,Clyy,Cl,C4) and M=5L,p

3.2 Using Temporal Constraints with NTG

While the NT'G formulation allows any spatial constraint to be easily coded into the constraint set,
including temporal constraints requires more cargg [5, 4]. A key idea in the temporal formulation
of NTG is to let event times become state variables’in the optimization. For example suppose that
n events occur at T; for i =0,1,---,n. This allows precedence constraints to be included in the
optimization by equations relating the event times. In equation 16, we define 7 as a scaled time
variable. It is equal zero when time, ¢, is equal to zero, but it is equal to one when all events
have occurred at T = 33 T;. In the setup of the optimization problem, which will be detailed
below, scaled time 7 rather than time ¢ is used. In the optimization details below, the use of new
time variable, 7, has implications for the way integrals and derivatives are written. For example,
derivatives with respect to ¢ become derivatives with respect to 7 with the chain rule as in 17.

(16)




d ddr 1d

& ad T Tdr an
As a result, after introducing new state variable T', cost and constramt functions given in equations
(11) and (12) become :

J(z,u, T) = ¢o(x(0), u(0), T) + ¢5(=(1),u(1), T) + /: L(z(r),u(r), T)dr (18)
by < 9o(x(0), u(0),T) < ubp Ny initial constraints
by < Yp(z(1),u(1),T) < ubs Ny final constraints (19)
b < e(z(1),u(7),T) < ub, N, trajectory constraints

There will be also additional temporal constraints which can be expressed as a set of inequalities

given below
by < Yp(T) L ubr N7 temporal constraints

3.3 Formulation 6f the Low Observability Problem

Now that we have outlined the general methods, we focus on how to apply these methods to the
low observability problem. Define a set of event times T5; and 75;43 for i1 = 0,1,---,n and the
number of events 2n + 1 is specified. We will set up events such that periods of low observability
Tpi—1 <t < Ty; are interspersed with times of high observability, To; <t < Thi4;.

The system dynamics for this problem consist of the vehicle dynamics in equation (3) together
with the following dynamics on the new state variables

dTy;

dr

Tain _g i=0,..n )
dr

Note that the system is differentially flat. All variables of interest can be written as a function
of the output variables, x,y,T5;, To;+1 and their derivatives. The observability model in equation
. (10) is a function of the flat variables, and is used in the optimization below.

Next, we develop a set of cost and constraint functions. Note that we will develop a general
set, with design options to eliminate some components of the cost and constraint functions. A
cost function, J, is shown in equation (20). The first term in the cost function is standard in
the temporal approach. Since T' is the mission time as shown in equation (21), this term acts to
minimize the total mission time. The second term is a speed penalty. It has also been used in the
past as a way to penalize control action. The third and fourth terms are cumulative penalities on
observability. Since probability of detection and signature are always non-negative, these terms are
appropriate and may be useful. W,, W, and W, represent the weight functions on the speed,
probability and signature penalties, respectively. The integral in equation (20) is respect to the
scaled time, 7, and has bounds from zero to one. The cost function presented here is a classic
tradeoff between various perfomance measures and control action measures. In the NTG code
setup, the cost function here would use two subroutines: ucf, the “unintegrated cost function”
subroutine is used for the costs that are integrated and icf, the “initial cost function” may be used
to add constant terms to the cost.

J= T2+/ ( ((d'r)2+ (Z:) ) +prd+Ws'og) Tdr | (20)

8
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whiere
: i=n :
T= Z(Tzi + Toiy1) (21)
i=0
Next we present a set of constraints, and we divide the constraints into subsets based on the type
of constraint used. First there are constraints on the initial conditions for the variables. There are
linear constraints as in equation (22) on the initial position and event times. The initial condition
constraints on velocities become nonlinear because of the differentiation with respect to scaled time
shown above in equation (17). The constraints on velocities are presented in equation (23). In
the NTG code, the linear initial conditions are set up with a variable, while the nonlinear initial
conditions are written with a subroutine, nlicf.

z(0) < z(7)|r=0 < z(0)

¥(0) < y(7)lr=0 < y(0)

minTy; < Tz,'l-,-:g < mazTy;
minTzit1 < Toit1lr=0 < mazToiq (22)

. d ,
T#(0) < d—:[,=0 < T#(0)

T§(0) < Shreo < TH(0) (23)

where () = %@2

Speed and radius of curvature limits are nonlinear functions of scaled time. Constraints for these
are shown in equations (24) and (25). Note that the equations are scaled to aid in convergence of
the nonlinear optimization codes. These constraints are written with the subroutine nltcf in the

NTG code.
2 1 dz\? dz\? . .
min
= T2 ((dr) + (d‘r) ) =1 (24)

dz &? dy d?
Pmin _ _ GGt~ @
= 15
Pmaz dz\2 dr
(®)+®
Finally, constraints on observability can be included. Consider a constraint on signature as
in equations (26). In order to circumvent difficulties with discontinuous constraints, which are
not permitted with the NTG method, a single constraint on signature is represented with two
continuous constraints. During the different low or high observability events, only one of these
two constraints is active. During low-observable times the signature is constrained to be low as
in the first equation in the set of equations in (26). The second constraint in the second line of
(26) is present, but is automatically satisfied if the first constraint is satisfied. During the times

of high-observability, the fourth equation in (26) allows the signature to reach its high value. The
constraint in the third line of (26) is present, but is automatically satisfied.

<

&

-

< (25)

Ty <t <Taip 0 < sig < sigy,

0 < sig < sign

Taip1 <t < Toiye 0 < sig(Tx) < sigr
0 < sig < sigy (26)




Constraints on probability of detection can be included in a similar fashion shown in equation
(27). : :

T3 <t <Tainr 0 <pq<pqg

' 0 < pa < pay

Toip1 <t < Toigo 0 < pa(T2) < pa,
0 < pg < Pay (27)

Note that the constraints on signature and probability of detection are nonlinear function of
scaled time and are represented in the NTG code similarly to speed and curvature limits.

The last constraint in equation (28) ensures that the vehicle reaches the destination waypoint
within a radius bound e, and enqz. This constraint is nonlinear, and it is a function of the final
scaled time, 7 = 1, which corresponds to unknown actual final time of ¢;.

2

es .

——e;m" < (2(1) — Zdestinationwaypoint(1) )2 + (¥(1) — Ydestinationwaypoint (1)) 2<1 (28)
‘maz

4 Examples

In this secton, illustrative examples to our approach for the real time low observability nonlinear
trajectory generation problem are given. We assume that altitude is fixed at 12 km. The initial
location of the aircraft is at (-100 km, -100 km), and there is a radar located at the origin. Note that
the difficulties with flying trajectories in these examples were highlighted earlier in figure ( 4). In the
examples below, the aircraft travels to a target located at (5 km, -15 km). The examples highlight
the ability of the temporal methods to design for distinct periods of high and low observability.
However, they also demonstrate sensitivity to the initial coarse route.

Figures (9),(10), and (11) result from a simulation in which the initial coarse route input to the
NTG algorithm is at (-100km, -15 ure (9) shows that the optimized path first circles through
the left side of the radar, thereby constraining the signature value of the aircraft during the low-
observability event as shown in Figure (10). In this example the low signature bound is at 4.2
After ?sec, the signature is allowed to increase to the maximum value at 6.5. The azimuth angle
of the corresponding flight path is given in Figure (11).

If NTG is initially fed with a better course route (0, -100 km), then NTG produces a different
solution as illustrated in figures (12),(13), and (14). In this example the UAV fli ose in”, with -
low azimuths, directly toward the target. The signature values are lower than in the first example.

Similar example set also included in Figures (15) through (22). The examples in figures (21) through
(22) highlight that the feature of the temporal method where the signature is allowed to be high
for a period of time.

5 Conclusions

‘We will work on this section
Because NTG is a gradient descent method, solutions that are local minima are possible. Future
work is investigating the use of NTG combined with global approaches to address these issues.
Research supported as part of the MICA program for DARPA and AFRL, under contract
insertcontractnumber. 77777

10




References

(1] John T. Betts. Practical Methods for Optimal Control Using Nonlinear ngmmming.l Society
of Industrial and Applied Mathematics, 2001.

ALLAN
[2] Corman D. and Knutti J user guide. The Boeing Company Internal Report, 2003.

(3] Lian F.-L. and Murray R.M. Real-time trajectory generation for the cooperative path planning
of multi-vehicle systems. Conference on Decision and Control, 2002.

(4] Lian F.-L. and Murray R.M. Cooperative task planning of multi-robot systems with temporal
constraints. International Conference on Robotics and Automation, 2003.

(5] Milam M.B. Missile interceptioﬂ research report. California Institute of Technology Internal
Report, 2002check.

(6] Milam M.B., Mushambi K., and Murray R.M. A computational approach to real-time trajectory
generation for constrained mechanical systems. Conference on Decision and Control, 2000.

(7] Milam M.B,, Franz R., and Murray R.M. Real-time constrained trajectory generation applied
to a flight control experiment. IFAC 2002, 2002.

[8] Gill P.E., Murray W., Saunders M.A., and Wright M. H. User’s guide for npsol 5.0 a fortran
package for nonlinear programming. Systems Optimization Laboratory, Stanford University,
Stanford CA, 1998.

11




Figure 5: The Signature Data Versus Elevation and Azimuth Angles.
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Auto fit with tensor product spiines (lower order splines)

Figure 6: The Signature Data Fit Function by B-Spline Tensor Product Functions.
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Figure 7: The Error Between Signature Data and Fit Model.
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Figure 8: The Probability of Detection Data Versus Range and Signature Values.
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Figure 10: Signature Value Across the Optimized Path for Low Observability
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Figure 11: Azimuth Angle Across the Optimized Path for Low Observability
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Figure 12: Ground Track of the Optimized Path for Low Observability with Better Initial Course

Route
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Figure 13: Signature Value Across the Optimized Path for Low Observability with Better Initial
Course Route '
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Figure 14: Azimuth Angle Across the Optimized Path for Low Observability with Better Initial
Course Route
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Figure 15: Ground Track of the Optimized Path for Low Observability
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Figure 16: Signature Value Across the Optimized Path for Low Observability
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Figure 17: Azimuth Angle Across the Optimized Path for Low Observability
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Figure 18: Ground Track of the Optimized Path for Low Observability
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Figure 19: Signature Value Across the Optimized Path for Low Observability

Figure 20: Azimuth Angle Across the Optimized Path for Low Observability
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Figure 21: Ground track example 5
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Figure 22: Signature example 5
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